AI, startup hacks, and engineering miracles from your friends at Faraday

Third-party data in marketing: Why it's important and how to protect consumers' privacy

Alexis Hughes on

third-party data iceberg illustration
The use of third-party data isn't new, but it's becoming a necessity as businesses shift to a customer-centric approach. Marketers everywhere are realizing that first-party data is only the tip of the iceberg when it comes to understanding their customers.

Pitney Bowes and Forrester report that 92% of marketing and data analytics professionals agree that the rise in digital technologies and interactions has increased the need for bringing outside data into their companies. While it may be as simple as understanding your existing customers' household and financial standing, with third-party data you can also gain deep insights into your leads on a known-identity basis.

Overall, leveraging third-party and first-party data adds breadth and depth to your customer insights, informing better branding and messaging decisions, personalization efforts across channels, and taking much of the guesswork out of targeted and location-based marketing campaigns.

Customer identity resolution

customer identity resolution illustration
The capability to bring together first-party data from various sources and third-party data to compile a unified picture of each customer is increasingly valuable. In 2018, spending dedicated to identity data assets grew by more than 50%, to a total of $846MM.

Personally identifiable information (PII) is crucial to connecting the dots across multiple touchpoints (online and offline) to form a holistic picture of your customers and prospects so you can reach them with content that will resonate with them through the channels that matter.

Using third-party data to improve personalization

marketing personalization illustration
In a time when almost all consumers prefer ads and products that are relevant to them, knowing how and when to serve your target market is crucial to effectively engaging your customers. According to Forbes, right now, 46% of marketing executives are not where they want to be in terms of delivering personalization, and 57% say that they hope to advance their personalization initiatives over the next year.

Enriching your first-party data with third-party information on your customers' financial, household, transactional, or lifestyle categories gives you a clearer idea of what your customers look like in real life.

To take it a step further, enriched customer data helps machine learning algorithms build better models. Cluster models, for example, sort individuals into distinct groups based on common attributes. These groups, or personas, can affirm your intuitions about what your customer base looks like, but may also surprise you by revealing significant groups you hadn't known about or previously considered important.

How third-party data helps optimize ad targeting and nurture campaigns

predictive scoring targeted marketing illustration
If you're using predictive lead scoring capabilities, the accuracy and precision of those scores improve with the quality and quantity of third-party data that you introduce. This not only benefits your leads' experiences, as they'll receive content that better aligns with their interests and where they are in their customer journeys, but it will save you time and money when you're deciding how to prioritize your outreach.

A popular way of leveraging third-party data with predictive modeling for digital marketing is Facebook lookalike audiences. But since the platform shut down advertisers' access to this data in April of 2018, gaining deep insights from Facebook has been a struggle for many businesses that are trying to better understand their audiences and target the right consumers.

If you enrich your first-party data with third-party attributes, you can gain insights on a granular level that you aren't getting with Facebook and other marketing channels. You can then segment known-identity audiences based on certain attributes — or develop in-depth personas for segmentation — and push the appropriate ad creative to those individual segments with the goal of increased, personalized engagement.

This goes for not only new leads you're nurturing, but also for the customers you're actively engaging. Pitney Bowes and Forrester's survey showed that 83% of respondents realize timelier and contextually relevant customer experiences are a high priority when it comes to optimizing their marketing strategies. With nurture campaigns, timeliness and relevance are key components for success.

Another advantage of leveraging third-party data is the ability to match site's captured emails to real people. This allows you to bucket leads into certain personas for more personalized nurture campaigns that will pull them through their customer journeys with you. Your leads are more likely to receive messaging that aligns with where they are in their individual journeys, and it will save your team time and money when you decide how to prioritize your lead outreach.

customer lifecycle optimization whitepaper

Enhancing geospatial analyses with third-party data

geospatial analysis illustration
Geographic data has obvious benefits, but incorporating additional third-party in geographic analyses improves the quality of the insights. Knowing where your ideal customers live is one piece of the geomarketing puzzle, but gaining an understanding of how your audiences will best interact with your ads offline is achieved by knowing more than just their geographic location.

Attributes like household information, transportation preferences, and lifestyle data helps you prioritize where you place ads, as well as where you might establish new brick-and-mortar presences. A subway ad or billboard placed in your customers' neighborhoods can be a great way to advertise your e-commerce business for those who don't live near a storefront, but for customers who are in your brick-and-mortar trade zones, perhaps a direct mailer advertising an in-store sale would better drive business.

From a creative perspective, audiences can vary widely depending on their physical locations, so the messaging and images chosen for your campaigns should be curated for specific audiences in particular geographies. Providing relevant content increases your chances of audience engagement, so capitalizing on the insights provided by third-party data is a necessity.

This is the case with SEM advertising, which segments audiences by geographic location. With the insights gained from third-party data, you can optimize your SEM spend by targeting areas where higher-value customers reside, spending less on areas that aren't as likely to bring in revenue.

Using third-party data ethically

data privacy security illustration
With the rise of regulations like GDPR, privacy and validity of data are prominent concerns when using third-party data and PII. However, there are ways to ensure that your customers' and prospects' privacy is protected. You want to be sure your data comes from a verified source, isn't dangerously invasive, and is leveraged to benefit the customers you're targeting.

Social scraping is a common tactic, and it can provide large categories of data on behavioral tendencies, consumer habits, and some personal information, though this data may not always be entirely accurate. At Faraday we avoid social scraping in favor of canonical sources of information from established third-party data vendors. Vendors like Epsilon verify the accuracy of the high-quality data we license and leverage for our partners.

Faraday's Director of Data Science, William Morris, notes that we sidestep many consumer privacy issues by dealing with datasets that categorize data, such as consumer purchases, by type of product and frequency, rather than the exact stores where those purchases are made. This leads to a significant lift in machine learning models' predictive capabilities without being invasive from a privacy standpoint. Additionally, each of our clients' customer data is siloed using industry-standard practices to protect the privacy of each clients' customers.

Faraday also actively works to build models that are agnostic to a person's membership to protected classes. We exclude potentially harmful categories like ethnicity, religion, or primary language data, as these can disenfranchise certain groups of the consumer population. As an additional security measure, we employ a suite of tools for post-model checking to ensure that attributes that could indicate a person's race or class don't make the models biased or adversely impact a population.

Taking into consideration these types of ethical practices is important when exploring your own use of third-party data.

blog_cta_faradiy

Is your marketing team AI-ready? 3 considerations for consumer marketers

Perry McDermott on

No doubt you're hearing about the power of AI to transform marketing. But if you're like many marketers, the prospect of integrating artificial intelligence (AI) into your strategy may be daunting. It's a rapidly evolving field with seemingly endless applications, and you may have had relatively little experience with AI to date.

However, if you're committed to a data-driven marketing strategy, it's worth getting acquainted with AI and machine learning (ML); doing so will allow you to further monetize your existing data, and put the immense power of big data to work for your business.

According to Capgemini Consulting, 3 out of 4 organizations using AI and ML increase their sales and enhance customer satisfaction by more than 10%. Marketers already use AI to optimize various initiatives and automate repetitive, time-consuming tasks. Some applications include:

  • Audience expansion (AKA lookalike targeting)
  • Personalization at scale
  • Programmatic advertising
  • Automated content creation

If you're curious about what AI can do for your marketing team, but still trying to decide whether you're ready to implement the technology, here are three crucial points to consider:



3_considerations_ai_ready-3

1) Goals and strategy: Which outcomes do you want to optimize?

Establishing clear goals will help you make decisive choices about which applications of AI are best for your team, which data sources to tap into, and how to implement the technology with the resources at your disposal.

Are you more focused on optimizing customer acquisition, turning one-time buyers into repeat customers, or perhaps something much more specific?

If your goal is to optimize ad spend across your digital campaigns, you might consider leveraging applications like propensity modeling and programmatic advertising. If your goal is to drive upsells or cross-sells amongst your existing customer base, propensity modeling and personalized offers will be more helpful.

It's important to clearly define your target outcomes before making decisions about how to apply AI within the context of your particular marketing strategy. Then, research and strategic planning will help you decide which solutions are worth prioritizing in pursuit of your established goals, and which will involve more trouble and cost than they're worth.

2) Data: Is your data AI-ready?

Data is the fuel that powers AI. Quantity and quality will ultimately determine the effectiveness of your AI applications. This means it's critically important to ask whether you have enough historical data to train your AI — typically, at least 1,000 "past examples" — and whether your data is clean and rich.

Does your data have sufficient breadth and depth? More specifically, how many attributes and events are being considered per record, and are those additional data points predictive of the outcomes you want to optimize?

Thanks to big data vendors, consumer marketers don't need to rely purely on first-party data to train their AI models. Enriching existing lead and customer data with third-party consumer data can improve the predictive accuracy of your AI applications by an order of magnitude.

Here are a few ways to ensure your data is AI-ready:

  • Identify predictive data sources: If the goal is to increase lead conversion rates, your ESP and e-commerce platform will likely contain the most predictive data. Lifecycle mapping is a useful exercise to help you discover which data sources are most predictive of a target outcome.

  • Do a data audit: Clean your existing data by eliminating inconsistent, incomplete, or duplicate records. You can do this in-house or hire a consultant. Alternatively, certain AI platforms and third-party services can help automate the process.

  • Add depth and breadth: Enrich your first-party lead and customer records with third-party demographic, behavioral, and property-based data. While licensing third-party data can be costly and time-consuming, certain AI platforms and third-party services include third-party data and automate the data enrichment process. The Faraday Identity Graph is a prime example.

wp01_clo_promo-2

3) Implementation: Which approach makes the most sense for your team?

The resources needed to operationalize AI depend on how you choose to implement your solution. Business Insider's AI in Marketing report lists three common approaches: building in-house capabilities, using a third-party service, or using a platform. Each approach has its pros and cons, so it's important to carefully consider whether a solution's benefits outweigh implementation time and costs.

In-house capabilities

This is the most customizable, yet most resource-intensive approach to operationalizing AI, and should only be considered if your entire company is committed to an AI-first mindset. At minimum, building in-house capabilities from scratch requires:

  • Rich training data
  • Data storage capabilities
  • ML algorithms
  • Data science automation systems
  • Deployment features and integrations
  • Experienced talent (data scientists, ML experts, and engineers)

Third-party services

For companies that require numerous AI applications across different business functions, but don't necessarily need to feed insights and predictions between applications, third-party services like IBM's Watson can be a good alternative.

These services help facilitate AI implementation by including data science automation systems and built-in ML algorithms that in-house data science teams can use to build AI applications for marketing, accounting, SCM, or any other function worthy of optimization and automation. At minimum implementing AI with a third-party service requires:

  • Rich training data
  • Deployment features and integrations
  • Experienced talent (data scientists, ML experts, and engineers)

AI platforms

Platforms are designed to streamline AI implementation for relatively specific sets of use cases. ML capabilities and features are built in to platforms and supported by data science teams, enabling marketers to easily interact with, and act on AI-powered insights and predictions through the platform's user interface.

While specific requirements will vary depending on the platform, at minimum, operationalizing AI with a platform requires:

  • Basic training data

So, is your marketing team ready to implement AI?

If you have enough customer data, there's probably a solution that will fit your needs, but choosing the right implementation approach for your specific objectives can be challenging. If you're having trouble, consider the following questions:

  • Is your company committed to an AI-first strategy? If so, where do your marketing objectives fit into the strategy?
  • Does your company already have an in-house data science team? If so, do they have the bandwidth to focus on your marketing objectives? If not, do you have the resources to recruit and hire the right talent?
  • How important is customization? Will your AI-powered marketing insights and predictions help optimize AI efforts in another business function?
  • What's your timeline? In-house capabilities generally take at least 18 months to build from scratch, third-party services can take between 12-18 months depending on customization requirements, and platforms will take 6-12 weeks depending on predictive modeling requirements.

How to build your own consumer marketing AI stack

If customization is a priority and you have the resources to build in-house capabilities or use a third-party service, we've created a guide to building your own consumer marketing AI stack.

Alternatively, if it seems like your team should be using a platform, the guide will give you a good understanding of the data, systems, and features included in Faraday's AI platform.

faradiy_promo


What is customer lifecycle optimization and how does it work?

Perry McDermott on

customer_lifecycle_optimization

Revenue and the customer lifecycle

For nearly every B2C company, revenue is linked to the customer lifecycle. Customer acquisition, engagement, and retention initiatives directly or indirectly impact revenue growth and sustainability by either reducing customer acquisition costs, increasing customer lifetime value (LTV), or ideally, both.

Effective marketing strategies revolve around the customer lifecycle; understanding key lifecycle stages, identifying events that are likely to trigger transitions between stages, and finding ways to optimize interactions across the lifecycle.

Naturally, the more you know about your customers and how to influence them to transition into a desired stage, the more efficiently you can grow and sustain revenue with the resources at your disposal.

Simply put, that's what customer lifecycle optimization is all about: leveraging rich customer data and predictive analytics techniques to generate insights and make predictions that measurably improve outcomes at each stage of the customer lifecycle.

Customer lifecycle optimization (a 4-step practice)

Customer lifecycle optimization (CLO) is a practice. As with other practices, CLO involves a series of prescribed steps to be done effectively. While specific lifecycle stage names, data sources, and analytics techniques will vary depending on your industry, company, and objectives, the canonical CLO process comprises four steps: lifecycle mapping; data discovery; predictive groundwork; and implementation and action.

1) Lifecycle mapping

The first step in any CLO initiative is always identifying and defining key lifecycle stages and transitions between stages. Mapping these stages and transitions to a uniform customer lifecycle is crucial to uncovering rich, predictive data.


The uniform B2C customer lifecycle:

B2C_customer_lifecycle

While terminology will change from business to business, we found that this formulation is rich enough to capture important boundaries, yet simple enough to avoid stages with ambiguous transitions.

Think about your customer lifecycle. How are stages defined? Which attributes qualify individuals to be placed in those stages? What events trigger transitions between stages?

Feel free to use the following table to help organize your findings:

Lifecycle_mapping_table

Note: The Customer lifecycle optimization whitepaper dives deeper into transitions and litmus tests. It's free to download.

2) Data discovery

At each stage, prospects, leads, and customers will complete certain events that will individually or collectively trigger a transition in or out of that stage. Individuals will also have different attributes, which help determine whether or not they belong in any given stage.

Go through each cell of your customer lifecycle map and think about which events or attributes in your data could be used to trigger a transition or pass the litmus test. Then, think about where you can find that data. Is it in your ESP, CRM, or a custom data warehouse?

3) Predictive groundwork

Once you've formalized your lifecycle and its representation in data, you can start recognizing patterns and eventually predict outcomes. Imagine loading up your converted leads (customers in "retention and expansion") alongside your stale leads that never converted. What differences can you find?

This comparison analysis is especially effective when you've added depth and breadth to your existing data.

As you experiment with this type of pattern recognition, you'll quickly realize that it's the kind of thing that computers do very well. That's where machine learning comes in handy.

4) Guided outreach

Whether you want to increase conversion rates from lead generation campaigns or reduce churn from existing customers, properly targeted outreach is essential to engaging and motivating the right leads and customers to take a desired action.

Outbound communication is the strongest and most versatile intervention at an organization's disposal to compel progress and therefore expand revenue. This includes individually targeted digital advertising, a form of direct outreach.

Consider the following examples of outreach initiatives:

Customer_lifecycle_outreach_intervention

Having identified a stage transition you'd like to motivate with an outreach intervention, the question becomes, "Who do I reach?" Regardless of the desired transition, the general technique is called audience expansion, also known as "lookalike" audiences.

To apply the audience expansion technique, we must always identify the audience and a set of candidates with similar characteristics and attributes.

With these groups defined, the next step is to apply your predictive groundwork. This could involve using patterns you identified in your data to look for similar opportunities among your candidates, or in more advanced cases, using artificial intelligence to build a predictive model trained to discriminate between likely and unlikely transitioners.

Finally, you will be left with a well-defined group of candidates likely to transition into a desired lifecycle stage when reached with relevant content.

Putting it all together

To summarize the CLO practice, it's useful to recall the original motivation: leveraging rich data and statistical predictions to optimize revenue-building initiatives throughout the customer lifecycle. This means motivating transitions from one stage to the next.

At this point, you should have good understanding of what CLO is and the four canonical steps involved. For a deeper dive into specific data requirements and predictive analysis techniques, download the whitepaper below.

Customer lifecycle optimization whitepaper